Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
2.
Mol Cell Probes ; 63: 101815, 2022 06.
Article in English | MEDLINE | ID: mdl-35364264

ABSTRACT

The potency of human and veterinary rabies vaccines is measured based on the National Institute of Health (NIH) potency test that is laborious, time-consuming, variable, and requires sacrifice of large numbers of mice. ELISA-based methods quantifying rabies glycoprotein (rGP) are being developed as potential alternatives to the NIH potency test for release of rabies vaccines. The aim of the current study was focused on the evaluation of in vitro- and in vivo-based assays in order to assess their concurrence for adequate and reliable assessment of immunogenicity and protective potency of a plant-derived recombinant rGP. The recombinant rGP of strain ERA.KK was engineered, expressed and purified from Nicotiana benthamiana plants. The recombinant rGP excluded the transmembrane and intracytoplasmic domains. It was purified by chromatography (≥90%) from the plant biomass, characterized, and mainly presented as high molecular weight forms, most likely soluble aggregates, of the rGP ectodomain. It was well-recognized and quantified by an ELISA, which utilizes two mouse monoclonal antibodies, D1-25 and 1112-1, and which should only recognize the native trimeric form of the rGP. However, in mice, the recombinant rGP did not induce the production of anti-rabies virus neutralizing antibodies and did not confer protection after intracerebral viral challenge. Similar immunogenicity was observed in guinea pigs and rabbits. Our results demonstrate that use of the ELISA method described here is not predictive of performance in vivo. These data highlight the critical need to develop in vitro potency assays that reliably define the antigen content that can induce a protective response.


Subject(s)
Rabies Vaccines , Rabies , Animals , Antibodies, Viral , Enzyme-Linked Immunosorbent Assay/methods , Glycoproteins/genetics , Guinea Pigs , Mice , Rabbits , Rabies/prevention & control , Rabies Vaccines/chemistry , Recombinant Proteins
3.
Vaccine ; 40(12): 1864-1871, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35153091

ABSTRACT

BACKGROUND: The potential use of Bacillus anthracis as a bioterrorism weapon requires a safe and effective vaccine that can be immediately distributed for mass vaccination. Protective antigen (PA), a principal component of virulence factors edema toxin and lethal toxin of B. anthracis, has been the topic of extensive research. Previously, full-length PA (PA83) was manufactured using a transient plant-based expression system. Immunization with this PA83 antigen formulated with Alhydrogel® adjuvant elicited strong neutralizing immune responses in mice and rabbits and protected 100% of rabbits from a lethal aerosolized B. anthracis challenge. This Phase 1 study evaluates this vaccine's safety and immunogenicity in healthy human volunteers. METHODS: This first-in-human, single-blind, Phase 1 study was performed at a single center to investigate the safety, reactogenicity, and immunogenicity of the plant-derived PA83-FhCMB vaccine at four escalating dose levels (12.5, 25, 50 or 100 µg) with Alhydrogel® in healthy adults 18-49 years of age (inclusive). Recipients received three doses of vaccine intramuscularly at 28-day intervals. Safety was evaluated on days 3, 7, and 14 following vaccination. Immunogenicity was assessed using an enzyme-linked immunosorbent assay (ELISA) and a toxin neutralizing antibody (TNA) assay on days 0, 14, 28, 56, 84, and 180. RESULTS: All four-dose ranges were safe and immunogenic, with no related serious adverse events observed. Peak ELISA Geometric Mean Concentration (GMC) and TNA ED50 Geometric Mean Titer (GMT) were noted at Day 84, 1 month after the final dose, with the most robust response detected in the highest dose group. Antibody responses decreased by Day 180 across all dose groups. Long-term immunogenicity data beyond six months was not collected. CONCLUSIONS: This is the first study demonstrating a plant-derived subunit anthrax vaccine's safety and immunogenicity in healthy adults. The results support further clinical investigation of the PA83-FhCMB vaccine. ClinicalTrials.gov identifier. NCT02239172.


Subject(s)
Anthrax Vaccines , Anthrax , Bacillus anthracis , Adult , Anthrax/prevention & control , Antibodies, Bacterial , Antigens, Bacterial , Antigens, Plant , Humans , Immunogenicity, Vaccine , Single-Blind Method
4.
Mol Ther ; 30(5): 1966-1978, 2022 05 04.
Article in English | MEDLINE | ID: mdl-34774754

ABSTRACT

To advance a novel concept of debulking virus in the oral cavity, the primary site of viral replication, virus-trapping proteins CTB-ACE2 were expressed in chloroplasts and clinical-grade plant material was developed to meet FDA requirements. Chewing gum (2 g) containing plant cells expressed CTB-ACE2 up to 17.2 mg ACE2/g dry weight (11.7% leaf protein), have physical characteristics and taste/flavor like conventional gums, and no protein was lost during gum compression. CTB-ACE2 gum efficiently (>95%) inhibited entry of lentivirus spike or VSV-spike pseudovirus into Vero/CHO cells when quantified by luciferase or red fluorescence. Incubation of CTB-ACE2 microparticles reduced SARS-CoV-2 virus count in COVID-19 swab/saliva samples by >95% when evaluated by microbubbles (femtomolar concentration) or qPCR, demonstrating both virus trapping and blocking of cellular entry. COVID-19 saliva samples showed low or undetectable ACE2 activity when compared with healthy individuals (2,582 versus 50,126 ΔRFU; 27 versus 225 enzyme units), confirming greater susceptibility of infected patients for viral entry. CTB-ACE2 activity was completely inhibited by pre-incubation with SARS-CoV-2 receptor-binding domain, offering an explanation for reduced saliva ACE2 activity among COVID-19 patients. Chewing gum with virus-trapping proteins offers a general affordable strategy to protect patients from most oral virus re-infections through debulking or minimizing transmission to others.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Angiotensin-Converting Enzyme 2/genetics , Animals , Chewing Gum , Cricetinae , Cricetulus , Cytoreduction Surgical Procedures , Humans , Protein Binding , SARS-CoV-2 , Saliva/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Virus Internalization
5.
Acta Biomater ; 94: 204-218, 2019 08.
Article in English | MEDLINE | ID: mdl-31055121

ABSTRACT

Cell replacement therapies are often enhanced by utilizing polymer scaffolds to improve retention or direct cell orientation and migration. Obstacles to refinement of such polymer scaffolds often include challenges in controlling the microstructure of biocompatible molecules in three dimensions at cellular scales. Two-photon polymerization of acrylated poly(caprolactone) (PCL) could offer a means of achieving precise microstructural control of a material in a biocompatible platform. In this work, we studied the effect of various formulation and two-photon polymerization parameters on minimum laser power needed to achieve polymerization, resolution, and fidelity to a target 3D model designed to be used for retinal cell replacement. Overall, we found that increasing the concentration of crosslink-able groups decreased polymerization threshold and the size of resolvable features while increasing fidelity of the scaffold to the 3D model. In general, this improvement was achieved by increasing the number of acrylate groups per prepolymer molecule, increasing the acrylated PCL concentration, or decreasing its molecular weight. Resulting two-photon polymerized PCL scaffolds successfully supported human iPSC derived retinal progenitor cells in vitro. Sub-retinal implantation of cell free scaffolds in a porcine model of retinitis pigmentosa did not cause inflammation, infection or local or systemic toxicity after one month. In addition, comprehensive ISO 10993 testing of photopolymerized scaffolds revealed a favorable biocompatibility profile. These results represent an important step towards understanding how two-photon polymerization can be applied to a wide range of biologically compatible chemistries for various biomedical applications. STATEMENT OF SIGNIFICANCE: Inherited retinal degenerative blindness results from the death of light sensing photoreceptor cells. To restore high-acuity vision a photoreceptor cell replacement strategy will likely be necessary. Unfortunately, single cell injection typically results in poor cell survival and integration post-transplantation. Polymeric biomaterial cell delivery scaffolds can be used to promote donor cell viability, control cellular polarity and increase packing density. A challenge faced in this endeavor has been developing methods suitable for generating scaffolds that can be used to deliver stem cell derived photoreceptors in an ordered columnar orientation (i.e., similar to that of the native retina). In this study we combined the biomaterial poly(caprolactone) with two-photon lithography to generate a biocompatible, clinically relevant scaffold suitable for retina cell delivery.


Subject(s)
Biocompatible Materials/chemistry , Polyesters/chemistry , Retina/cytology , Animals , Caproates , Cell Movement , Humans , Induced Pluripotent Stem Cells/cytology , Inflammation , Lactones , Materials Testing , Microscopy, Electron, Scanning , Photons , Polymerization , Reproducibility of Results , Retinal Degeneration/therapy , Retinitis Pigmentosa/physiopathology , Stem Cells , Swine , Tissue Scaffolds
6.
Vaccine ; 36(39): 5865-5871, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30126674

ABSTRACT

Malaria continues to be one of the world's most devastating infectious tropical diseases, and alternative strategies to prevent infection and disease spread are urgently needed. These strategies include the development of effective vaccines, such as malaria transmission blocking vaccines (TBV) directed against proteins found on the sexual stages of Plasmodium falciparum parasites present in the mosquito midgut. The Pfs25 protein, which is expressed on the surface of gametes, zygotes and ookinetes, has been a primary target for TBV development. One such vaccine strategy based on Pfs25 is a plant-produced malaria vaccine candidate engineered as a chimeric non-enveloped virus-like particle (VLP) comprising Pfs25 fused to the Alfalfa mosaic virus coat protein. This Pfs25 VLP-FhCMB vaccine candidate has been engineered and manufactured in Nicotiana benthamiana plants at pilot plant scale under current Good Manufacturing Practice guidelines. The safety, reactogenicity and immunogenicity of Pfs25 VLP-FhCMB was assessed in healthy adult volunteers. This Phase 1, dose escalation, first-in-human study was designed primarily to evaluate the safety of the purified plant-derived Pfs25 VLP combined with Alhydrogel® adjuvant. At the doses tested in this Phase 1 study, the vaccine was generally shown to be safe in healthy volunteers, with no incidence of vaccine-related serious adverse events and no evidence of any dose-limiting or dose-related toxicity, demonstrating that the plant-derived Pfs25 VLP-FhCMB vaccine had an acceptable safety and tolerability profile. In addition, although the vaccine did induce Pfs25-specific IgG in vaccinated patients in a dose dependent manner, the transmission reducing activity of the antibodies generated were weak, suggesting the need for an alternative vaccine adjuvant formulation. This study was registered at www.ClinicalTrials.gov under reference identifier NCT02013687.


Subject(s)
Immunogenicity, Vaccine , Malaria Vaccines/immunology , Protozoan Proteins/immunology , Vaccines, Synthetic/immunology , Vaccines, Virus-Like Particle/immunology , Adjuvants, Immunologic/administration & dosage , Adolescent , Adult , Alfalfa mosaic virus , Antibodies, Protozoan/blood , Antigens, Protozoan/immunology , Female , Healthy Volunteers , Humans , Malaria Vaccines/adverse effects , Malaria, Falciparum/prevention & control , Male , Middle Aged , Plasmodium falciparum , Nicotiana/metabolism , Vaccines, Synthetic/adverse effects , Young Adult
7.
Biomacromolecules ; 19(9): 3682-3692, 2018 09 10.
Article in English | MEDLINE | ID: mdl-30044915

ABSTRACT

Degradable polymers are integral components in many biomedical polymer applications. The ability of these materials to decompose in situ has become a critical component for tissue engineering, allowing scaffolds to guide cell and tissue growth while facilitating gradual regeneration of native tissue. The objective of this work is to understand the role of prepolymer molecular weight and functionality of photocurable poly(caprolactone) (PCL) in determining reaction kinetics, mechanical properties, polymer degradation, biocompatibility, and suitability for stereolithography. PCL, a degradable polymer used in a number of biomedical applications, was functionalized with acrylate groups to enable photopolymerization and three-dimensional printing via stereolithography. PCL prepolymers with different molecular weights and functionalities were studied to understand the role of molecular structure in reaction kinetics, mechanical properties, and degradation rates. The mechanical properties of photocured PCL were dependent on cross-link density and directly related to the molecular weight and functionality of the prepolymers. High-molecular weight, low-functionality PCLDA prepolymers exhibited a lower modulus and a higher strain at break, while low-molecular weight, high-functionality PCLTA prepolymers exhibited a lower strain at break and a higher modulus. Additionally, degradation profiles of cross-linked PCL followed a similar trend, with low cross-link density leading to degradation times up to 2.5 times shorter than those of more highly cross-linked polymers. Furthermore, photopolymerized PCL showed biocompatibility both in vitro and in vivo, causing no observed detrimental effects on seeded murine-induced pluripotent stem cells or when implanted into pig retinas. Finally, the ability to create three-dimensional PCL structures is shown by fabrication of simple structures using digital light projection stereolithography. Low-molecular weight, high-functionality PCLTA prepolymers printed objects with feature sizes near the hardware resolution limit of 50 µm. This work lays the foundation for future work in fabricating microscale PCL structures for a wide range of tissue regeneration applications.


Subject(s)
Biocompatible Materials/chemistry , Polyesters/chemistry , Stereolithography , Acrylates/chemistry , Animals , Biocompatible Materials/adverse effects , Cells, Cultured , Cross-Linking Reagents/chemistry , Induced Pluripotent Stem Cells/drug effects , Mice , Molecular Weight , Retina/drug effects , Swine , Swine, Miniature
8.
Am J Trop Med Hyg ; 98(2): 420-431, 2018 02.
Article in English | MEDLINE | ID: mdl-29231157

ABSTRACT

Yellow fever (YF) is a viral disease transmitted by mosquitoes and endemic mostly in South America and Africa with 20-50% fatality. All current licensed YF vaccines, including YF-Vax® (Sanofi-Pasteur, Lyon, France) and 17DD-YFV (Bio-Manguinhos, Rio de Janeiro, Brazil), are based on live attenuated virus produced in hens' eggs and have been widely used. The YF vaccines are considered safe and highly effective. However, a recent increase in demand for YF vaccines and reports of rare cases of YF vaccine-associated fatal adverse events have provoked interest in developing a safer YF vaccine that can be easily scaled up to meet this increased global demand. To this point, we have engineered the YF virus envelope protein (YFE) and transiently expressed it in Nicotiana benthamiana as a stand-alone protein (YFE) or as fusion to the bacterial enzyme lichenase (YFE-LicKM). Immunogenicity and challenge studies in mice demonstrated that both YFE and YFE-LicKM elicited virus neutralizing (VN) antibodies and protected over 70% of mice from lethal challenge infection. Furthermore, these two YFE-based vaccine candidates induced VN antibody responses with high serum avidity in nonhuman primates and these VN antibody responses were further enhanced after challenge infection with the 17DD strain of YF virus. These results demonstrate partial protective efficacy in mice of YFE-based subunit vaccines expressed in N. benthamiana. However, their efficacy is inferior to that of the live attenuated 17DD vaccine, indicating that formulation development, such as incorporating a more suitable adjuvant, may be required for product development.


Subject(s)
Disease Models, Animal , Yellow Fever Vaccine/biosynthesis , Yellow Fever/prevention & control , Animals , Enzyme-Linked Immunospot Assay/methods , Humans , Mice/immunology , Neutralization Tests/methods , Yellow Fever/drug therapy , Yellow Fever Vaccine/immunology , Yellow Fever Vaccine/therapeutic use , Yellow fever virus/immunology
9.
Curr Opin Virol ; 26: 81-89, 2017 10.
Article in English | MEDLINE | ID: mdl-28800551

ABSTRACT

Production of proteins in plants for human health applications has become an attractive strategy attributed by their potentials for low-cost production, increased safety due to the lack of human or animal pathogens, scalability and ability to produce complex proteins. A major milestone for plant-based protein production for use in human health was achieved when Protalix BioTherapeutics produced taliglucerase alfa (Elelyso®) in suspension cultures of a transgenic carrot cell line for the treatment of patients with Gaucher's disease, was approved by the USA Food and Drug Administration in 2012. In this review, we are highlighting various approaches for plant-based production of proteins and recent progress in the development of plant-made therapeutics and biologics for the prevention and treatment of human diseases.


Subject(s)
Biological Products/metabolism , Genetic Vectors , Plant Viruses/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/virology , Recombinant Proteins/metabolism , Biotechnology/methods , Humans , Recombinant Proteins/genetics , Technology, Pharmaceutical/methods
10.
Biomacromolecules ; 17(5): 1684-95, 2016 05 09.
Article in English | MEDLINE | ID: mdl-27008004

ABSTRACT

The development of effective tissue engineering materials requires careful consideration of several properties beyond biocompatibility, including permeability and mechanical stiffness. While surfactant templating has been used for over a decade to control the physical properties of photopolymer materials, the potential benefit of this technique with regard to biomaterials has yet to be fully explored. Herein we demonstrate that surfactant templating can be used to tune the water uptake and compressive modulus of photo-cross-linked chitosan hydrogels. Interestingly, templating with quaternary ammonium surfactants also hedges against property fluctuations that occur with changing pH. Further, we demonstrate that, after adequate surfactant removal, these materials are nontoxic, support the attachment of induced pluripotent stem cells and facilitate stem cell differentiation to neuronal phenotypes. These results demonstrate the utility of surfactant templating for optimizing the properties of biomaterials intended for a variety of applications, including retinal regeneration.


Subject(s)
Cell Differentiation , Chitosan/chemistry , Hydrogels/chemistry , Induced Pluripotent Stem Cells/cytology , Neurons/cytology , Surface-Active Agents/chemistry , Tissue Engineering/methods , Animals , Biocompatible Materials , Cells, Cultured , Materials Testing , Mice
11.
Hum Vaccin Immunother ; 11(1): 118-23, 2015.
Article in English | MEDLINE | ID: mdl-25483524

ABSTRACT

The H1N1 influenza pandemic of 2009 stimulated interest in developing safe and effective subunit influenza vaccines using rapid and cost-effective recombinant technologies that can avoid dependence on hens' eggs supply and live viruses for production. Among alternative approaches to subunit vaccine development, virus-like particles (VLPs) represent an attractive strategy due to their safety and immunogenicity. Previously, we have produced a recombinant monomeric hemagglutinin (HA) protein derived from the A/California/04/09 (H1N1) strain of influenza virus in a plant-based transient expression system and demonstrated immunogenicity and safety of this monomeric HA in animal models and human volunteers. In an effort to produce higher potency influenza vaccine in plants, we have designed and generated enveloped VLPs using the ectodomain of HA from the A/California/04/09 strain and heterologous sequences. The resulting H1 HA VLPs (HAC-VLPs) elicited robust hemagglutination inhibition antibody responses in mice at doses lower than 1 µg in the presence or absence of Alhydrogel adjuvant. These results suggest enhanced immunogenicity of recombinant HA in the form of an enveloped VLP over soluble antigen.


Subject(s)
Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/immunology , Influenza Vaccines/isolation & purification , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/isolation & purification , Adjuvants, Immunologic/administration & dosage , Aluminum Hydroxide/administration & dosage , Animals , Antibodies, Viral/blood , Antigens, Viral/genetics , Antigens, Viral/immunology , Antigens, Viral/metabolism , Hemagglutination Inhibition Tests , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Influenza A Virus, H1N1 Subtype/genetics , Influenza Vaccines/administration & dosage , Influenza Vaccines/genetics , Mice, Inbred BALB C , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Nicotiana/genetics , Vaccines, Virus-Like Particle/administration & dosage , Vaccines, Virus-Like Particle/genetics
12.
Hum Vaccin Immunother ; 9(3): 553-60, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23296194

ABSTRACT

The increased worldwide awareness of seasonal and pandemic influenza, including pandemic H1N1 virus, has stimulated interest in the development of economic platforms for rapid, large-scale production of safe and effective subunit vaccines. In recent years, plants have demonstrated their utility as such a platform and have been used to produce vaccine antigens against various infectious diseases. Previously, we have produced in our transient plant expression system a recombinant monomeric hemagglutinin (HA) protein (HAC1) derived from A/California/04/09 (H1N1) strain of influenza virus and demonstrated its immunogenicity and safety in animal models and human volunteers. In the current study, to mimic the authentic HA structure presented on the virus surface and to improve stability and immunogenicity of the HA antigen, we generated trimeric HA by introducing a trimerization motif from a heterologous protein into the HA sequence. Here, we describe the engineering, production in Nicotiana benthamiana plants, and characterization of the highly purified recombinant trimeric HA protein (tHA-BC) from A/California/04/09 (H1N1) strain of influenza virus. The results demonstrate the induction of serum hemagglutination inhibition antibodies by tHA-BC and its protective efficacy in mice against a lethal viral challenge. In addition, the immunogenic and protective doses of tHA-BC were much lower compared with monomeric HAC1. Further investigation into the optimum vaccine dose and/or regimen as well as the stability of trimerized HA is necessary to determine whether trimeric HA is a more potent vaccine antigen than monomeric HA.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/administration & dosage , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/immunology , Orthomyxoviridae Infections/prevention & control , Animals , Antibodies, Bacterial/blood , Disease Models, Animal , Hemagglutination Inhibition Tests , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/isolation & purification , Influenza A Virus, H1N1 Subtype/genetics , Influenza Vaccines/administration & dosage , Mice, Inbred BALB C , Orthomyxoviridae Infections/immunology , Plants, Genetically Modified/genetics , Protein Engineering , Protein Multimerization , Survival Analysis , Nicotiana/genetics , Treatment Outcome , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology
13.
Viruses ; 4(11): 3227-44, 2012 Nov 19.
Article in English | MEDLINE | ID: mdl-23202523

ABSTRACT

Recently, we have reported [1,2] on a subunit influenza vaccine candidate based on the recombinant hemagglutinin protein from the A/Indonesia/05/2005 (H5N1) strain of influenza virus, produced it using 'launch vector'-based transient expression technology in Nicotiana benthamiana, and demonstrated its immunogenicity in pre-clinical studies. Here, we present the results of a first-in-human, Phase 1 randomized, double-blind, placebo-controlled study designed to investigate safety, reactogenicity and immunogenicity of three escalating dose levels of this vaccine, HAI-05, (15, 45 and 90 µg) adjuvanted with Alhydrogel® (0.75 mg aluminum per dose) and the 90 µg dose level without Alhydrogel®. Vaccine was administered intramuscularly in two injections three weeks apart to healthy adults of 18-49 years of age. At all dose levels the vaccine was generally safe and well tolerated, with no reported serious adverse events or dose-limiting toxicities. Mild local and systemic reactions were observed in all vaccine dose groups and the placebo group and their occurrence was not dose related. The incidence rates were higher in the groups receiving vaccine with Alhydrogel®. The immune response elicited by the HAI-05 vaccine was variable with respect to both hemagglutination-inhibition and virus microneutralization antibody titers, with the highest responses observed in the 90 µg unadjuvanted group.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A Virus, H5N1 Subtype/immunology , Influenza Vaccines/immunology , Influenza, Human/prevention & control , Adolescent , Adult , Antibodies, Viral/blood , Antibodies, Viral/immunology , Humans , Influenza Vaccines/administration & dosage , Influenza Vaccines/adverse effects , Influenza, Human/immunology , Male , Middle Aged , Recombinant Proteins/immunology , Nicotiana/genetics , Nicotiana/metabolism , Young Adult
14.
Influenza Other Respir Viruses ; 6(3): 204-10, 2012 May.
Article in English | MEDLINE | ID: mdl-21974811

ABSTRACT

BACKGROUND: Influenza virus is a globally important respiratory pathogen that causes a high degree of annual morbidity and mortality. Significant antigenic drift results in emergence of new, potentially pandemic, virus variants. The best prophylactic option for controlling emerging virus strains is to manufacture and administer pandemic vaccines in sufficient quantities and to do so in a timely manner without impacting the regular seasonal influenza vaccine capacity. Current, egg-based, influenza vaccine production is well established and provides an effective product, but has limited capacity and speed. OBJECTIVES: To satisfy the additional global demand for emerging influenza vaccines, high-performance cost-effective technologies need to be developed. Plants have a potential as an economic and efficient large-scale production platform for vaccine antigens. METHODS: In this study, a plant virus-based transient expression system was used to produce hemagglutinin (HA) proteins from the three vaccine strains used during the 2008-2009 influenza season, A/Brisbane/59/07 (H1N1), A/Brisbane/10/07 (H3N2), and B/Florida/4/06, as well as from the recently emerged novel H1N1 influenza A virus, A/California/04/09. RESULTS: The recombinant plant-based HA proteins were engineered and produced in Nicotiana benthamiana plants within 2 months of obtaining the genetic sequences specific to each virus strain. These antigens expressed at the rate of 400-1300 mg/kg of fresh leaf tissue, with >70% solubility. Immunization of mice with these HA antigens induced serum anti-HA IgG and hemagglutination inhibition antibody responses at the levels considered protective against these virus infections. CONCLUSIONS: These results demonstrate the feasibility of our transient plant expression system for the rapid production of influenza vaccine antigens.


Subject(s)
Antigens, Viral/genetics , Gene Expression , Influenza Vaccines/genetics , Influenza, Human/immunology , Nicotiana/genetics , Animals , Antibodies, Viral/immunology , Antigens, Viral/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/immunology , Influenza Vaccines/immunology , Influenza, Human/prevention & control , Influenza, Human/virology , Mice , Mice, Inbred BALB C , Orthomyxoviridae/genetics , Orthomyxoviridae/immunology , Nicotiana/metabolism
15.
Biotechnol J ; 4(2): 230-7, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19156736

ABSTRACT

The expression of proteins in plants both transiently and via permanently transformed lines has been demonstrated by a number of groups. Transient plant expression systems, due to high expression levels and speed of production, show greater promise for the manufacturing of biopharmaceuticals when compared to permanent transformants. Expression vectors based on a tobacco mosaic virus (TMV) are the most commonly utilized and the primary plant used, Nicotiana benthamiana, has demonstrated the ability to express a wide range of proteins at levels amenable to purification. N. benthamiana has two limitations for its use; one is its relatively slow growth, and the other is its low biomass. To address these limitations we screened a number of legumes for transient protein expression. Using the alfalfa mosaic virus (AMV) and the cucumber mosaic virus (CMV) vectors, delivered via Agrobacterium, we were able to identify three Pisum sativum varieties that demonstrated protein expression transiently. Expression levels of 420 +/- 26.24 mg GFP/kgFW in the green pea variety speckled pea were achieved. We were also able to express three therapeutic proteins indicating promise for this system in the production of biopharmaceuticals.


Subject(s)
Alfalfa mosaic virus/genetics , Cucumovirus/genetics , Pisum sativum/physiology , Plants, Genetically Modified/metabolism , Recombinant Proteins/metabolism , Transfection/methods , Genetic Vectors/genetics , Species Specificity
16.
Biologicals ; 36(6): 354-8, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18938088

ABSTRACT

Cell substrates are a key component of successful vaccine development and throughout the last several decades there has been a dramatic increase in the types of cells available for vaccine production. Nevertheless, there is a continued demand for new and innovative approaches for vaccine development and manufacturing. Recent developments involving cells of insect and plant origin are attracting considerable scientific interest. Here we review vaccine antigen production in plant-based systems as was presented by Dr. Vidadi Yusibov of Fraunhofer USA Center for Molecular Biotechnology at the IABS International Scientific Workshop on NEW CELLS FOR NEW VACCINES II that was held in Wilmington, Delaware on September 17-19, 2007.


Subject(s)
Plants/metabolism , Vaccines, Subunit/biosynthesis , Vaccines, Synthetic/biosynthesis , Virology/trends , Animals , Animals, Genetically Modified , Antigens, Viral/chemistry , Bacteria/metabolism , Fungi/metabolism , Genetic Vectors , Humans , Insecta , Plants/genetics , Plants, Genetically Modified , United States , Vaccines, Subunit/adverse effects , Vaccines, Subunit/economics , Vaccines, Subunit/genetics , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/economics , Vaccines, Synthetic/genetics , Viral Vaccines/chemistry , Virology/methods
17.
J Biol Chem ; 280(32): 28877-84, 2005 Aug 12.
Article in English | MEDLINE | ID: mdl-15961386

ABSTRACT

gamma-Glutamyl hydrolase (GGH, EC 3.4.19.9) catalyzes removal of the polyglutamyl tail from folyl and p-aminobenzoyl polyglutamates. Plants typically have one or a few GGH genes; Arabidopsis has three, tandemly arranged on chromosome 1, which encode proteins with predicted secretory pathway signal peptides. Two representative Arabidopsis GGH proteins, AtGGH1 and AtGGH2 (the At1g78660 and At1g78680 gene products, respectively) were expressed in truncated form in Escherichia coli and purified. Both enzymes were active as dimers, had low K(m) values (0.5-2 microm) for folyl and p-aminobenzoyl pentaglutamates, and acted as endopeptidases. However, despite 80% sequence identity, they differed in that AtGGH1 cleaved pentaglutamates, mainly to di- and triglutamates, whereas AtGGH2 yielded mainly monoglutamates. Analysis of subcellular fractions of pea leaves and red beet roots established that GGH activity is confined to the vacuole and that this activity, if not so sequestered, would deglutamylate all cellular folylpolyglutamates within minutes. Purified pea leaf vacuoles contained an average of 20% of the total cellular folate compared with approximately 50 and approximately 10%, respectively, in mitochondria and chloroplasts. The main vacuolar folate was 5-methyltetrahydrofolate, of which 51% was polyglutamylated. In contrast, the principal mitochondrial and chloroplastic forms were 5-formyl- and 5,10-methenyltetrahydrofolate polyglutamates, respectively. In beet roots, 16-60% of the folate was vacuolar and was again mainly 5-methyltetrahydrofolate, of which 76% was polyglutamylated. These data point to a hitherto unsuspected role for vacuoles in folate storage. Furthermore, the paradoxical co-occurrence of GGH and folylpolyglutamates in vacuoles implies that the polyglutamates are somehow protected from GGH attack.


Subject(s)
Arabidopsis/enzymology , Folic Acid/chemistry , Polyglutamic Acid/chemistry , Vacuoles/metabolism , gamma-Glutamyl Hydrolase/physiology , Beta vulgaris/metabolism , Chromosomes, Plant , DNA Primers/chemistry , DNA, Complementary/metabolism , Databases as Topic , Endopeptidases/metabolism , Escherichia coli/metabolism , Expressed Sequence Tags , Genes, Plant , Glutamates/chemistry , Kinetics , Models, Chemical , Pisum sativum/metabolism , Protein Binding , Subcellular Fractions/metabolism , Tetrahydrofolates/pharmacology , Time Factors , Ultracentrifugation , gamma-Glutamyl Hydrolase/chemistry
18.
Plant J ; 35(6): 675-92, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12969422

ABSTRACT

Plant nutrition critically depends on the activity of membrane transporters that translocate minerals from the soil into the plant and are responsible for their intra- and intercellular distribution. Most plant membrane transporters are encoded by multigene families whose members often exhibit overlapping expression patterns and a high degree of sequence homology. Furthermore, many inorganic nutrients are transported by more than one transporter family. These considerations, coupled with a large number of so-far non-annotated putative transporter genes, hamper our progress in understanding how the activity of specific transporters is integrated into a response to fluctuating conditions. We designed an oligonucleotide microarray representing 1096 Arabidopsis transporter genes and analysed the root transporter transcriptome over a 96-h period with respect to 80 mM NaCl, K+ starvation and Ca2+ starvation. Our data show that cation stress led to changes in transcript level of many genes across most transporter gene families. Analysis of transcriptionally modulated genes across all functional groups of transporters revealed families such as V-type ATPases and aquaporins that responded to all treatments, and families - which included putative non-selective cation channels for the NaCl treatment and metal transporters for Ca2+ starvation conditions - that responded to specific ionic environments. Several gene families including primary pumps, antiporters and aquaporins were analysed in detail with respect to the mRNA levels of different isoforms during ion stress. Cluster analysis allowed identification of distinct expression profiles, and several novel putative regulatory motifs were discovered within sets of co-expressed genes.


Subject(s)
Arabidopsis/physiology , Cations/pharmacokinetics , Genes, Plant , Ion Pumps/physiology , Multigene Family , Plant Roots/physiology , Transcription, Genetic/genetics , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Biological Transport , Calcium/pharmacology , Ion Pumps/genetics , Oligonucleotide Array Sequence Analysis/methods , Potassium/pharmacology , Reverse Transcriptase Polymerase Chain Reaction , Sodium Chloride/pharmacology
19.
Chaos ; 12(1): 231-239, 2002 Mar.
Article in English | MEDLINE | ID: mdl-12779550

ABSTRACT

Spatiotemporal patterns including accelerating fronts, rotating waves, and homogeneous oscillations evolve during the electrodissolution of metals like cobalt and iron that exhibit passivity under potentiostatic control. The nature of the patterns is determined by long-range (nonlocal) coupling through the electric field which in turn is influenced by the geometry of the electrochemical cell, the applied potential, and the conductivity of the electrolyte. A two-variable model in a three-dimensional geometry is presented which is able to simulate the essential features of the experimental system.(c) 2002 American Institute of Physics.

SELECTION OF CITATIONS
SEARCH DETAIL
...